Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Protein & Cell ; (12): 17-27, 2023.
Article in English | WPRIM | ID: wpr-971604

ABSTRACT

The global COVID-19 coronavirus pandemic has infected over 109 million people, leading to over 2 million deaths up to date and still lacking of effective drugs for patient treatment. Here, we screened about 1.8 million small molecules against the main protease (Mpro) and papain like protease (PLpro), two major proteases in severe acute respiratory syndrome-coronavirus 2 genome, and identified 1851Mpro inhibitors and 205 PLpro inhibitors with low nmol/l activity of the best hits. Among these inhibitors, eight small molecules showed dual inhibition effects on both Mpro and PLpro, exhibiting potential as better candidates for COVID-19 treatment. The best inhibitors of each protease were tested in antiviral assay, with over 40% of Mpro inhibitors and over 20% of PLpro inhibitors showing high potency in viral inhibition with low cytotoxicity. The X-ray crystal structure of SARS-CoV-2 Mpro in complex with its potent inhibitor 4a was determined at 1.8 Å resolution. Together with docking assays, our results provide a comprehensive resource for future research on anti-SARS-CoV-2 drug development.


Subject(s)
Humans , Antiviral Agents/chemistry , COVID-19 , COVID-19 Drug Treatment , High-Throughput Screening Assays , Molecular Docking Simulation , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Viral Nonstructural Proteins
2.
Protein & Cell ; (12): 877-888, 2021.
Article in English | WPRIM | ID: wpr-922482

ABSTRACT

A new coronavirus (SARS-CoV-2) has been identified as the etiologic agent for the COVID-19 outbreak. Currently, effective treatment options remain very limited for this disease; therefore, there is an urgent need to identify new anti-COVID-19 agents. In this study, we screened over 6,000 compounds that included approved drugs, drug candidates in clinical trials, and pharmacologically active compounds to identify leads that target the SARS-CoV-2 papain-like protease (PLpro). Together with main protease (M


Subject(s)
Humans , Antiviral Agents/therapeutic use , Binding Sites , COVID-19/virology , Coronavirus Papain-Like Proteases/metabolism , Crystallography, X-Ray , Drug Evaluation, Preclinical , Drug Repositioning , High-Throughput Screening Assays/methods , Imidazoles/therapeutic use , Inhibitory Concentration 50 , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Naphthoquinones/therapeutic use , Protease Inhibitors/therapeutic use , Protein Structure, Tertiary , Recombinant Proteins/isolation & purification , SARS-CoV-2/isolation & purification
3.
Protein & Cell ; (12): 723-739, 2020.
Article in English | WPRIM | ID: wpr-827018

ABSTRACT

Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of the novel coronavirus SARS-CoV-2. Herein, we identified two potent inhibitors of human DHODH, S312 and S416, with favorable drug-likeness and pharmacokinetic profiles, which all showed broad-spectrum antiviral effects against various RNA viruses, including influenza A virus, Zika virus, Ebola virus, and particularly against SARS-CoV-2. Notably, S416 is reported to be the most potent inhibitor so far with an EC of 17 nmol/L and an SI value of 10,505.88 in infected cells. Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knock-out cells. This work demonstrates that both S312/S416 and old drugs (Leflunomide/Teriflunomide) with dual actions of antiviral and immuno-regulation may have clinical potentials to cure SARS-CoV-2 or other RNA viruses circulating worldwide, no matter such viruses are mutated or not.


Subject(s)
Animals , Humans , Mice , Antiviral Agents , Pharmacology , Therapeutic Uses , Betacoronavirus , Physiology , Binding Sites , Cell Line , Coronavirus Infections , Drug Therapy , Virology , Crotonates , Pharmacology , Cytokine Release Syndrome , Drug Therapy , Drug Evaluation, Preclinical , Gene Knockout Techniques , Influenza A virus , Leflunomide , Pharmacology , Mice, Inbred BALB C , Orthomyxoviridae Infections , Drug Therapy , Oseltamivir , Therapeutic Uses , Oxidoreductases , Metabolism , Pandemics , Pneumonia, Viral , Drug Therapy , Virology , Protein Binding , Pyrimidines , RNA Viruses , Physiology , Structure-Activity Relationship , Toluidines , Pharmacology , Ubiquinone , Metabolism , Virus Replication
4.
Protein & Cell ; (12): 723-739, 2020.
Article in English | WPRIM | ID: wpr-828747

ABSTRACT

Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of the novel coronavirus SARS-CoV-2. Herein, we identified two potent inhibitors of human DHODH, S312 and S416, with favorable drug-likeness and pharmacokinetic profiles, which all showed broad-spectrum antiviral effects against various RNA viruses, including influenza A virus, Zika virus, Ebola virus, and particularly against SARS-CoV-2. Notably, S416 is reported to be the most potent inhibitor so far with an EC of 17 nmol/L and an SI value of 10,505.88 in infected cells. Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knock-out cells. This work demonstrates that both S312/S416 and old drugs (Leflunomide/Teriflunomide) with dual actions of antiviral and immuno-regulation may have clinical potentials to cure SARS-CoV-2 or other RNA viruses circulating worldwide, no matter such viruses are mutated or not.


Subject(s)
Animals , Humans , Mice , Antiviral Agents , Pharmacology , Therapeutic Uses , Betacoronavirus , Physiology , Binding Sites , Cell Line , Coronavirus Infections , Drug Therapy , Virology , Crotonates , Pharmacology , Cytokine Release Syndrome , Drug Therapy , Drug Evaluation, Preclinical , Gene Knockout Techniques , Influenza A virus , Leflunomide , Pharmacology , Mice, Inbred BALB C , Orthomyxoviridae Infections , Drug Therapy , Oseltamivir , Therapeutic Uses , Oxidoreductases , Metabolism , Pandemics , Pneumonia, Viral , Drug Therapy , Virology , Protein Binding , Pyrimidines , RNA Viruses , Physiology , Structure-Activity Relationship , Toluidines , Pharmacology , Ubiquinone , Metabolism , Virus Replication
5.
Protein & Cell ; (12): 723-739, 2020.
Article in English | WPRIM | ID: wpr-828583

ABSTRACT

Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of the novel coronavirus SARS-CoV-2. Herein, we identified two potent inhibitors of human DHODH, S312 and S416, with favorable drug-likeness and pharmacokinetic profiles, which all showed broad-spectrum antiviral effects against various RNA viruses, including influenza A virus, Zika virus, Ebola virus, and particularly against SARS-CoV-2. Notably, S416 is reported to be the most potent inhibitor so far with an EC of 17 nmol/L and an SI value of 10,505.88 in infected cells. Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knock-out cells. This work demonstrates that both S312/S416 and old drugs (Leflunomide/Teriflunomide) with dual actions of antiviral and immuno-regulation may have clinical potentials to cure SARS-CoV-2 or other RNA viruses circulating worldwide, no matter such viruses are mutated or not.


Subject(s)
Animals , Humans , Mice , Antiviral Agents , Pharmacology , Therapeutic Uses , Betacoronavirus , Physiology , Binding Sites , Cell Line , Coronavirus Infections , Drug Therapy , Virology , Crotonates , Pharmacology , Cytokine Release Syndrome , Drug Therapy , Drug Evaluation, Preclinical , Gene Knockout Techniques , Influenza A virus , Leflunomide , Pharmacology , Mice, Inbred BALB C , Orthomyxoviridae Infections , Drug Therapy , Oseltamivir , Therapeutic Uses , Oxidoreductases , Metabolism , Pandemics , Pneumonia, Viral , Drug Therapy , Virology , Protein Binding , Pyrimidines , RNA Viruses , Physiology , Structure-Activity Relationship , Toluidines , Pharmacology , Ubiquinone , Metabolism , Virus Replication
6.
Virologica Sinica ; (6): 181-189, 2011.
Article in Chinese | WPRIM | ID: wpr-423769

ABSTRACT

Torque teno virus(TTV)is a nonenveloped virus containing a single-stranded,circular DNA genome of approximately 3.8kb.We completely synthesized the 3808 nucleotides of the TTV(SANBAN isolate)genome,which contains a hairpin structure and a GC-rich region.More than 100 overlapping oligonucleotides were chemically synthesized and assembled by polymerise chain assembly reaction(PCA),and the synthesis was completed with splicing by overlap extension(SOEing).This study establishes the methodological basis of the chemical synthesis of a viral genome for use as a live attenuated vaccine or gene therapy vector.

SELECTION OF CITATIONS
SEARCH DETAIL